
Introducing TYP • May 2013

Introducing TYP
A next generation programming language

Scott Klarenbach

PointyHat Software
scott@pointyhat.ca

Summary

Programming languages have continually evolved toward higher levels of abstraction. Typically, each new
generation of languages parses expressions ever closer to those used naturally by the human programmer.
This is accomplished by outsourcing to a compiler many details that for years had been manually specified.
Naturally this results in a direct correlation between language abstraction and programmer productivity,
as we have seen historically in the path from Assembly; to C; through to Java; and Python. Continued gains
along these lines are crucial if programmers are to keep up with the demands of a world in which automation
is an expected commodity. Additionally, as end users interact with more and more software agents of ever
increasing sophistication, they too will demand elegant tools that allow for routine automation without the
help of a professional programmer. It is possible that programmers in thirty years will consider current
scripting languages, like Python, to be very low level indeed, and regard them the same cautious curiosity
with which a young programmer today might view Assembly. What useful abstractions will future
programmers enjoy that enable the type of productivity shift we’ve seen in the past fifty years? And which
of those abstractions can we start to introduce today that will allow the evolution of languages to continue
in the spirit that has taken us all the way from Assembler to Ruby?

1

Introducing TYP • May 2013

“When someone says ’I want a programming language in which I need only say what I wish
done,’ give him a lollipop.” - Alan Perlis

1. Introduction

Typ is a new programming language intended to dramatically improve developer productivity
across a wide range of domains. TYP introduces novel abstractions designed to relieve the
programmer of many common responsibilities imposed by modern programming languages.

The result is a set of semantics that are closer to natural language, and therefore easier to reason
about than traditional source code. TYP proposes a syntax elegant enough to allow source code to
be used as system documentation, enabling business stakeholders; systems analysts; programmers;
and customer support to reference and reason about the same common document. Ultimately, TYP
provides a framework for automation in various domains that allows novice programmers and
power users to produce enterprise quality software without the aid of an experienced programmer.

2. Target Audience

Although TYP provides many sophisticated features that enable a programmer to develop novel
and interesting solutions, it is not yet intended as a replacement for general purpose programming
languages such as Java or C. Rather, TYP is targeted toward novice programmers, system adminis-
trators, business analysts and power users who wish to quickly prototype, model and interact
with new domains without incurring the overhead complexity of a general purpose programming
language. In many ways, TYP is analogous to SQL: a domain specific language designed as a
succinct wrapper around common yet complex underlying patterns.

Throughout this document, we will provide examples of TYP code to help illustrate various
concepts. Since TYP is intended to be understood by anyone, examples are often all that is needed
to convey a concept. For example, the uninitiated can usually infer what is meant by the following.� �
every f r i d a y : a t 3pm : f o r the next 2 months

$ l i s t any ? incomplete # t imesheets : where the @laborer was ? not−s i c k then
$email the @resul t as a #csv−f i l e : to # accounting� �

3. Philosophy of a Language

3.1 Yet another programming language?

There are countless new languages appearing on the scene every month, with the vast majority of
them gaining little, if any, traction. A new language must therefore provide an order of magnitude
improvement within the key areas it targets. The cost of learning a language is high, and the
risk of adopting one in a professional context is much higher still. TYP may ultimately fail to be
adopted outside of a small group, but even so, its creators will enthusiastically use and support it
for years to come. The reason is simple.

TYP was created as an internal tool for developing commercial enterprise software applications.
The programmers that use TYP and the company that sponsors it do so because it provides a

2

Introducing TYP • May 2013

competitive advantage. The advantage is quantified using real metrics and justified by the cold
realities of the free market. There is also the implicit advantage of developer happiness, thanks to
the ease of expression fostered by TYP. This metric is hard to measure, but easy to feel.

A few fundamental ideas and beliefs have motivated the creation of TYP. These ideas came
about while building software in the real world, with nearly every concept selected to eliminate a
specific suffering encountered by developers.

3.2 Reading vs Writing

Programmers spend most of their time reading and reasoning about existing code rather than
writing new code. Therefore, it seems unwise to optimize a language for conciseness and brevity
of syntax since a language with dense constructs or clever syntactic shorthands becomes very
difficult to understand at a glance. It serves as a barrier to entry. Experienced programmers must
first be indoctrinated into the idiosyncrasies of the language before they can understand the code,
and non-programmers are usually excluded completely. Consider also that most programmers
under the age of forty can probably type as fast as they speak, and the value in reducing language
tokens to cryptic shorthand becomes even more unclear. Code should be written for the reader, in
the same way that a newspaper article is written for the reader. Whatever literary device will make
the expression most clear is precisely the one that should be used. A programming language that
does not focus on the reader of code is an inefficient one - no matter how long it takes a human to
type, or a computer to execute.

3.3 Explicit vs Implicit

Any details of an implementation that are implicitly understood rather than explicitly specified
impose a conceptual burden on the reader. That is not to say that implicit concepts should not
be permitted in a programming language. Indeed, many of the most useful abstractions of TYP
result from semantics that are implied, but it should be acknowledged that any implicit magic
provided by a language, no matter how convenient, is a cost to be paid upfront by those hoping to
understand the code. Therefore, a good rule of thumb is that a programming language should
make implicit only those devices that are already present in the common language of the user. For
example, consider the following two lines of TYP.� �
$archive /my/ f i l e . pdf : to /tmp/ f i l e . zip
$email the @resul t : to scot t@pointyhat . ca� �

Disregard any special characters to which you haven’t been introduced, and take a guess as to
the meaning of @result. In other words, what is emailed to scott@pointyhat.ca? It is obviously
the result of the previous operation - the archived pdf file. Lower level languages would have
us first come up with a name for some variable, and then explicitly assign the result of the first
operation to that variable so that we could refer to it later. TYP does this for us automatically, and
yet without any introduction to the concept, most readers are likely to understand the expression
because the implicitness is not novel, but rather a common convention of the English language.
It is this sort of implicitness that a language should strive to provide - that which eliminates
mundane tasks without requiring any new understanding on the part of the reader.

This may seem verbose, and indeed many experienced programmers will admonish the idea
as heresy, but remember that TYP is designed to be both the source code and the documentation

3

Introducing TYP • May 2013

of a given system. It is therefore better to be explicit, since understanding dense logical concepts
is much easier if the reader doesn’t have to fill in the blanks along the way. The following example
shows this idea taken to extremes.� �
; ; a novice TYP programmer would p r e f e r t h i s
$divide @net−p r o f i t : by @total−revenue then $mult iply : by 100

; ; to t h i s
@net−p r o f i t / @total−revenue X 100

; ; while a more experienced TYP programmer might s t a t e
@net−p r o f i t as a # percentage : of @total−revenue� �

Business applications do not have complicated mathematics, and so do not require a notation
system that resembles calculus. The first style of code would certainly become unwieldy if used
to desribe Newton’s laws of motion, but there are already many great languages to use if that
is your intention. The difference between the first and second samples above may seem trivial,
and if you’re an accountant you may even prefer the second. But remember, understanding any
interesting system can not be done in isolation. Even for experienced programmers, parsing the
second variety of code - dozens of lines at a time - is more straining, since it is less familiar than
the more verbose version. TYP source code mimics the way a concept might be expressed around
a boardroom table, and therefore results in no loss of fidelity when translated from the whiteboard
to the keyboard.

3.4 Source Code as Documentation

Programmers are currently the only group that can make use of a source code document, and
there is plenty of evidence that even they cannot efficiently reason about the code after a certain
period of time. The most relevant and authoritative artifact - indeed often the only artifact - of
a given software system is the source code, but due to specialized syntax it is inaccessible by
the majority of the stakeholders in a given domain. Worse still, general purpose programming
languages provide such numerous avenues of expression that code is often confusing even when
shared between programmers on the same project. A far better situation would be one in which
customer service, project managers, sales staff, board members and programmers referenced the
source code directly in order to reason about, and make changes to, the software system.

If programmer productivity is a goal, source code must be quickly understandable regardless
of when or by whom it was written. Anything less results in a burden known as legacy software,
which is one of the greatest sources of suffering for the modern programmer.

4

Introducing TYP • May 2013

4. Core Concepts

TYP introduces a few built in constructs outlined here so that reader can more easily follow the
subsequent examples. Each construct in TYP is specified with a unique prefix character, to aid the
reader in quickly parsing the context of an expression, regardless of the order in which the terms
are presented.

4.1 Types

TYP is composed of types, which can be thought of as nouns or things, as they represent the
objects in the environment that a programmer will interact with. Types are always prefixed with
the ’#’ character. Some common examples include #client, #invoice, #pdf, #server and #bank-account.

4.2 Properties

Each type can have multiple properties, which are attributes of the thing being specified. Properties
are always prefixed with the ’@’ character. For example, the type #client might have the properties
@first-name and @last-name.

4.3 Actions

Each type has associated actions. These are like verbs, in that they operate on types in order to
perform some process or task. Actions are always prefixed with the ’$’ character. Some common
actions might include $delete, $archive, $close and $send.

4.4 States

Each type likely has associated states of being. These are analogous to adjectives, since they act to
further qualify a given type. States are usually defined in terms of a type’s underlying properties,
and they are always prefixed with the ? character. For example, given the type #client with the
property @budget, we might define a state ?important to mean any @budget that is larger than
$100,000. We can then refer to ?important #clients, as a quick qualifying filter.

4.5 Parameters

Each action that operates on a type is likely to have one or more parameters. These can be thought
of as adverbs, because they further qualify the behavior of an action. Parameters are always
prefixed with the ’:’ character. For example, the action $email of the type #string has a parameter
:to, which indicates to whom the email should be sent, i.e.,� �
$email ‘ ‘Wanna grab lunch ? ’ ’ : to scot t@pointyhat . ca� �

5

Introducing TYP • May 2013

4.6 Comments and Keywords

Finally, anything prefixed with the ’;’ character is a comment which is ignored by TYP. The only
other terms encountered in this document are keywords, and will be introduced by example as
we move along. TYP keywords, such as if and when, are never prefixed by a special character.

5. Key Abstractions

The abstractions that distinguish TYP from lower level languages like Python or Ruby are as
follows. These constructs promote a more direct translation between the intended logic and the
source code. The developer specifies "what" they’d like to accomplish, and TYP strives hard to
take care of the "how".

5.1 Data Types

In addition to the familiar types of most languages, such as strings, numbers, dates, booleans,
etc., many more types that are common to modern development scenarios are provided, such as
email addresses; PDF documents; databases; phone numbers etc. TYP goes further than simply
providing a library of extensible types by implicitly recognizing types based on patterns in the
source text. These patterns, like types themselves, are extensible by the programmer. For example,
consider the following expression.� �
$email /my/ f i l e . pdf : to scot t@pointyhat . ca� �

TYP automatically casts “/my/file.pdf” as the type #pdf-document, and sets both the types
and values of its @name and @location properties accordingly. Similarly, “scott@pointyhat.ca” was
recognized as the type #email-address. Note this wasn’t a string of text as in many other languages,
but rather a first-class data-type recognized directly by the language. Pattern matching of source
text to data types provides the convenience of not having to explicitly state each type, and aids
the source code in its utility as documentation; implicit, contextual typing is a common device of
the English language.

Pattern matching also facilitates an elegant form of polymorphism, whereby the same action
will trigger different results depending on the types in the surrounding context.� �
$send c :\ cute−k i t t e n . jpg : to scot t@pointyhat . ca
; ; sends a document as an email attachment

$send " drinks a f t e r work ? " : to 778−319−4280
; ; sends a t e x t s t r i n g as an sms message� �

Date types leverage this pattern matching to eliminate another great source of developer
suffering. The following lines all produce valid #dates in TYP.� �
next f r i d a y evening
3 weeks from−now
2 days ago
l a s t month� �
6

Introducing TYP • May 2013

The patterns that map to types are extensible by the programmer. There are numerous uses of
such a feature. One such case that comes default with TYP is the ability to specify formatting by
example, rather than prescriptive regular expressions. For example:� �
$format # dates : l i k e May 1 , 2003� �

Types can be used for patterns, and vice versa, which is useful for text parsing and extraction.� �
$ e x t r a c t #phone−numbers : from /some/ f i l e . t x t� �
5.2 States and Properties

Types have properties, as is outlined in section 4.2. These can be thought of as attributes that
describe the object in question, and act as higher level qualifiers of a type, often by combining
simpler properties. States play an important role in many of the inherent conveniences found in
TYP. In addition to programmer-defined states, TYP automatically creates states in response to
various expressions initiated by the programmer. For example, TYP provides the inverse of any
state automatically, so that once ?active is defined for #client, you can ask:� �
i s # c l i e n t 3 ? i n a c t i v e
>> Yes .� �

TYP also commonly associates various actions with states. So, defining the action $archive for
#invoice allows us to:� �
$get # i n v o i c e s ? archived yesterday� �
5.3 Filtering

Armed with a set of states for a given type, programmers can constrain and filter actions based on
state. This works for simple query operations and complex commands alike.� �
$ l i s t ? important # c l i e n t s
$suspend ? overdue # accounts� �

TYP is forgiving of many qualifying words that are used in English, treating them as whitespace.
You may have noticed “the @result” used in previous sections; “the” is ignored by TYP, as are
several other commonly used words. TYP also understands that speakers frequently switch
between singular and plural tenses when referring to types.� �
$ l i s t any ? important # c l i e n t s
$ p r i n t every ? important # c l i e n t� �

We can combine states and parameters in flexible ways, so that our code will read like English
even when performing multiple tasks at once.� �
$suspend any ? overdue # account : t h a t i s ? not−a c t i v e� �

7

Introducing TYP • May 2013

5.4 Variable Declaration and Assignment

Declaring new variables is a common task in any programming language yet it is often the
case that programmers are forced to declare a variable merely as a placeholder for the previous
operation, so that it can be referenced in the next operation. Poorly named variables are a pervasive
source of confusing and inelegant source code. A language should provide abstractions for the
most common types of scenarios so as to reduce the number of custom variable and function
declarations. You have already seen an example of this in the section 2.� �
$archive any ? i n a c t i v e # account ? smaller−than $50 , 0 0 0
$email the @resul t : to scot t@pointyhat . ca� �

@result is automatically bound in this context for us. We could similarly use @it to refer to the
last property in the same expression, without having to repeat our self.� �
$ s e t @factor : to 5 i f # account i s ? important otherwise $ s e t @it : to 3� �

This ability improves the expressiveness of actions with multiple clauses, or actions with
repeated chains of if branches. In a typical language one usually has no choice but to be
redundant.� �
; ; ins tead of
i f (@age == 3 or @age == 4 or @age = 7)
; ; j u s t say
i f @age i s 3 , 4 or 7� �

A related feature is the implicit binding that happens for multiple actions in the same expres-
sion.� �
$backup then $ d e l e t e every #pdf : in / t h i s / d i r e c t o r y

; ; or how about

$ l i s t every ? maintenance # c o n t r a c t ? scheduled−f o r t h i s−month
$log the @resul t : to /some/ f i l e . t x t then $email the @number : to scot t@pointyhat . ca� �

In the first example, each #pdf is first backedup, then deleted, just as one would expect. The
second example is more dense, but if TYP is of any value, most readers will easily understand its
purpose. The @result that is logged to /some/file.txt is the list of ?maintenance #contracts that are
?scheduled-for this month. Of greater interest is the second clause of the second expression.� �
$email the @number : to scot t@pointyhat . ca� �

What is the @number? It is a property of #contract, and TYP knows this implicitly from the
surrounding context even though it was two expressions prior (the logging happened in between).

Naturally there are many situations in which custom variable declaration is appropriate. TYP
allows this in the traditional manner, but offers one additional method that fits more comfortably
in many scenarios. Variables are often an afterthought, whereby the programmer first constructs
an expression and then realizes the need to refer to it by name in the subsequent expression(s).
TYP allows the semantics of the language to mimic the thought train of the programmer, using
the > operator.

8

Introducing TYP • May 2013

� �
$get ? overdue #books > @late−books
$return any @late−books : that−are ? completed� �

This operator is also useful in other situations, and acts similar to the redirection operator
familiar to most unix administrators.� �
c :\ f i l e . t x t > @my−t e x t� �
5.5 Events

You have seen how ?states play an integral role both for #types and $actions. Another area where
states and actions interoperate in a useful way is the eventing framework that TYP makes available
for any declared states. Consider an action $complete for a type #book. Once this action has been
defined for the #book, TYP attaches a state representing the new action. This allows a programmer
to declare:� �
when #book i s ? completed $return @it : to the # l i b r a r y� �

Subsequent code in the environment, will automatically trigger the event.� �
$complete #book : t i t l e d " Being and Nothingness "
; ; book i s returned to the l i b r a r y� �

TYP strives hard for consistency, so any concepts learned early on should be applicable to
more advanced scenarios. Keeping that in mind, we should be able to use state constraints with
events, much as we previously did with actions.� �
when ? important # account i s ? c losed $ n o t i f y # accounting� �

Here, the event is only triggered if an ?important #account is $closed, rather than for every
account. The flexibility of ordering also holds, so we could just as easily� �
$ n o t i f y # accounting when ? important # account i s ? c losed .� �
5.6 Conversions

A very common activity performed manually by programmers in lower-level languages is the
manual conversion from one type to another. This happens so frequently it can obscure the true
intention of a section of code. Whether converting from strings to numbers, json to xml, or html to
pdfs, programmers are forced to manually provide boiler-plate code to handle these conversions;
however, when describing how a system should work at the conceptual level, most people take
for granted that these conversions should occur, as is evident by the shorthand we inject into our
everyday language. "Send the invoice to the supplier". What is really meant is: "Convert the invoice
to a pdf file, attach the pdf file to an email, and then send the EMAIL to the supplier." The conversion
steps are implicit, and taken for granted in our speech. A programming language should work
the same way.

TYP will search for any conversion paths that are present in the system to try and logically
transform from one type to another. This happens without the programmer having to specify the

9

Introducing TYP • May 2013

path explicitly, regardless of the number of conversions required to satisfy the action. TYP comes
with many conversions built in automatically, even for less than obvious scenarios.� �
$save www. newyorktimes . com/ a r t i c l e : to /some/ f i l e . doc
; ; i m p l i c t l y convert html −> xml −> MS Word� �

Of course, conversions are extensible so that programmers can define their own in a given
domain so that they might state their intent in more natural language.� �
$ invoice # suppl ie r 1 : f o r # job 2

$email any ?new # c l i e n t s as #xml : to owner@acme . com� �
5.7 Errors

Although programmers can explicitly instruct TYP in the event of an error, it is usually not
necessary since TYP actively tries to prevent and resolve errors that might otherwise occur in lower
level languages. In the event that an error does arise, TYP presents it to the programmer at a higher
level of abstraction, usually as a derivative of some TYP construct such as a non-existent conversion.
In much the same way as virtual machines liberated programmers from memory management,
TYP provides several algorithms that implement best practice error handling techniques across
a wide range of scenarios, at the language level. This can easily be configured by experienced
programmers; however novices will benefit from a language that automates much of the error
handling code that would otherwise have to be written by hand in a language like Javascript or
Python.

5.8 Syntactic Extension

TYP is equipped with a powerful aliasing mechanism to allow for easy extension of the language.
In the simplest realms, programmers can use the $alias action to tweak the types and keywords of
the language in order to provide for more personalized expression.� �
$ a l i a s when : with whenever
; ; and now we can say
whenever a ?new # lead i s ? crea ted
$schedule a 2pm # reminder : to ‘ ‘ Followup with @lead−name , @lead−phone−number ’ ’� �

More advanced pattern based aliasing is also possible. Recall the natural semantics of :that
when filtering.� �
$ l i s t # c l i e n t s : t h a t are ? i n a c t i v e� �

The parameter :that is merely a patterned alias for :where ?state is @. Moreover, states like
?inactive are defined as patterned aliases of simpler properties, such as not @active or @active is
false. Much of TYP is constructed in a similar manner; what is meant when we say TYP is written
mostly in itself.

10

Introducing TYP • May 2013

Aliases play a big role in the interoperability between types and actions as well.� �
$send # email " hey " : to scot t@pointyhat . ca
; ; equates to
$email " hey " : to s c o t t

$ c r e a t e # archive : of /some/ d i r e c t o r y
; ; i s the same as
$archive /some/ d i r e c t o r y� �

Just as type automatically provides events for the states that we define, it also provides many
aliases between actions and the types.

6. Real World Examples

The following section displays a few additional examples of how could be used in the real world.� �
; ; system adminis t ra t ion t a s k s
$def ine @dev−db : as # database : a t l o c a l h o s t : named "my−p r o j e c t "
$def ine @production−db : as # database : a t 1 9 2 . 1 6 8 . 0 . 1 0 0 : named "my−p r o j e c t "
ton ight : a t midnight

$backup the @production−db : to /bak/staging−@today . s q l
$compare @dev−db : to @production−db then $save the @resul t : to /tmp/ d i f f . s q l
$convert /tmp/ d i f f . s q l : to # s q l then $execute : on the @production−db
i f any @errors ? occurred

$ r e s t o r e the @production−db : using /bak/staging−@today . s q l then
$email @errors : to admin@acme . com

; ; rout ine leveraging of web−based apis
$monitor the @arr ival−time of # f l i g h t AC207 : f o r any ? changes
i f @resul t ? changes $ t e x t @it : to @my−c e l l

; ; custom s c r i p t i n g opportunt ies
every 5 minutes : f o r the next 5 days

$search http :// vancouver . c r a i g s l i s t . com : f o r " radiohead " or " radiohead t i c k e t s "
i f a @resul t i s ? found $ e x t r a c t any # email−addresses or #phone−numbers then
$ t e x t @them : to 778−319−4280� �

7. Internal Design

TYP is designed around the guiding precepts of self-containment and consistency. Self-containment
describes a property of programming languages whereby they are defined largely in terms of their
own constructs. To put it another way, TYP is written almost entirely in TYP. The core concept
of TYP is types, i.e., #database or #client. These types, and a few core language features such as
variable binding and control flow are written in a LISP variant called Racket. Almost every other
concept introduced in this paper is written in TYP itself. For example, actions, prefixed with $, i.e.,
$send or $delete, are really just types under the hood. This is more readily apparent if you look at
the code to define a new action.� �
$def ine # a c t i o n my−a c t i o n . . .� �

11

Introducing TYP • May 2013

Actions are not the only types in TYP. The remaining primary concepts such as properties,
states, parameters and events are also defined as types, or as aliases of existing expressions. As
outlined in section 5.8, aliasing provides a powerful means by which TYP has been built in itself.

Self-containment leads naturally to consistency. When TYP introduces a semantic form, it
should hold universally throughout the language, rather than in restricted contexts or scenarios.
This allows programmers to intuitively build upon previous understanding as more advanced
concepts are digested. For example, recall that variables and properties are both prefixed with @, as
in, #client @first-name, or $subtract @costs :from @revenues. At first glance this may appear redundant,
but in fact there are no variables in TYP. Much as actions are simply types with convenient
shorthands built by pattern matching, variables are actually properties of the #environment type.
Thanks to the default types and actions introduced in section 5, most programmers needn’t
concern themselves with these sorts of details.� �
$def ine @my−var 3 ; ; i s t r a n s l a t e d by TYP i n t o
$add # property my−var : to #environment then $ s e t @it : to 3� �
Similarly, where you’ve seen "the @result", @result is actually a property of the previous #expression.

8. conclusion

TYP aims to improve the efficiency with which human beings read and understand source
code. This has traditionally led to major increases in developer productivity, allowing only a
few programmers to accomplish what previously would have taken several dozen people or
more; indeed, TYP already provides a measurable edge over contemporary languages for the
developers that use it to deliver custom software to their clients. This domain is the first of
many for which TYP could be of value, since TYP is basically an elegant wrapper around more
complex functionality. Future versions of the language may allow the underlying functionality
to be provided in a variety of languages (TYP already interoperates with Racket, Scheme and C,
with planned incorporation of Javascript in the future). Ostensibly, TYP could become a protocol
for various languages which would enable a wide range of programming tasks to be constructed
by the end user without the technical expertise of a programmer.

In a future that promises everyday objects will be connected to each other producing ever
increasing masses of data, the opportunities for predictive insights and automation potential is
tremendous; but because of an ever increasing shortage of talented developers it is imperative that
end users be empowered to leverage these opportunities in custom ways. In much the same way
that Microsoft Excel enabled a legion of amateur financial analysts, TYP could unleash the creative
power of motivated end users that want to build and automate existing systems with relative ease,
and without reliance on professional computer programmers.

12

	Introduction
	Target Audience
	Philosophy of a Language
	Yet another programming language?
	Reading vs Writing
	Explicit vs Implicit
	Source Code as Documentation

	Core Concepts
	Types
	Properties
	Actions
	States
	Parameters
	Comments and Keywords

	Key Abstractions
	Data Types
	States and Properties
	Filtering
	Variable Declaration and Assignment
	Events
	Conversions
	Errors
	Syntactic Extension

	Real World Examples
	Internal Design
	conclusion

